
OMG! Identifying and Refactoring
Common SQL Performance

Anti-patterns
Jeffrey M. Jacobs

Senior Data Architect, PayPal
jmjacob@jeffreyjacobs.com

mailto:jmjacob@jeffreyjacobs.com

Qualifications

• 2 centuries of experience with Oracle, as consultant and
trainer

• Presentation and paper available at
www.jeffreyjacobs.com, should be available for RMOUG
soon

• You have one of the top 1% most viewed LinkedIn
profiles for 2012

Copyright © Jeffrey M. Jacobs, 2009, 2010 2

http://www.jeffreyjacobs.com/

Survey Says

• DBAs
• Developers
• Architects
• Heavily non-Oracle development shop
• Concerned with performance
• Access to production size database
• Easy access to running traces, Enterprise Manager

Introduction to OMG Method

• OMG Method focuses on
– Refactoring SQL
– Indexing
– Refactoring application side code
– Hinting “suggestions” (not a hinting presentation)

• See Maria Colgan’s Oracle Optimizer…, Wed, 1:30

• OMG Method targets performance problems created by
Developers Inexperienced in Oracle technologies (DIO)

• OMG Method requires no DBA privileges other than
indexing
– No tracing

Fair Warning

• No demos
• No “proofs”
• Quick fixes
• Based on multiple experiences over many years from

real world

Requirements for SQL Performance Heroes

• Good SQL fundamentals
• Able to read basic explain plans
• Understand basic performance statistics from autotrace
• Courage to make and test changes

– Don’t take my word for it!
• Willingness to work with and educate DIOs

Why OMG Method

• Vast majority of performance problems are result of
DIOs’
– Lack of training in SQL and Oracle
– Lack of interest in SQL and Oracle
– Misinformation about SQL and Oracle performance
– Resistance to PL/SQL
– Focus on OO, procedural and functional programming

techniques
• Iterative thinking vs set thinking

Anti-Patterns
• Definition

– Common SQL or design practice that results in poor
performance

• OMG Method identifies common anti-patterns and
techniques to fix them
– Always verify that OMG fixes actually improve

performance
• OMG Method does not address schema design

problems
– No changes to tables or columns
– Statistics are “good”

Understanding Common Design and DIOs
Anti-patterns
• Overly Generic Data Models

– OBJECT, INSTANCE, ATTRIBUTE,
ATTRIBUTE_VALUE structures

• Fat, Unnormalized Tables
– Often with in-line CLOBs

• Fear of Joins
– “Joins are to be avoided a all costs” mentality

• Failure to Understand SQL query cost in application
code

• Iterative vs Set World View

Understanding Common Design and DIOs
Anti-patterns
• Unmanaged Surrogate Primary Keys

– (Nearly) all tables have surrogate primary keys
– Values for same row is not consistent across

environments, e.g., COMPANY_ID value for same
company differs across production, development, test
environments

– Typically use additional lookup columns
• Widespread use of Dummy values instead of NULL

– DIOs uncomfortable using NULL
– Misunderstanding of performance issues with NULL

Understanding Common Design and DIOs
Anti-patterns
• “Indexed searches are always better”
• Lack of documentation, i.e. What does this query do?

Avoid Dynamic SQL
• Avoid/eliminate dynamic SQL, e.g. creation and

execution of SQL queries created by concatenating
strings
– Particularly problematic when using literals for

constants
• Use prepared statements with bind variable
• Dynamic SQL results in heavy parsing overhead and

SGA memory usage
– Child cursors may be created even if the only

differences between SQL queries is literal values
– Potential for SQL Injection

Inline Views

• In SQL code, an inline view is a subquery used in place
of a table, e.g.,
SELECT …
 FROM

(SELECT …)
 …

Avoid/Replace Materialized Inline Views

• Inline views typically results in an “inline view” being
created in the execution plan
– Referred to as materialized inline view (MIV)

• Oracle may also merge the SQL inline view with the
outer query

• MIVs produce a result set, e.g., a temporary table (not to
be confused with Global Temporary Table)
– MIVs are never indexed
– Joins with a MIV effectively perform a Full Table Scan

(FTS) against the MIV, e.g. multiple FTS!
• Poor performance if result set is large

Avoid/Replace Materialized Inline Views

• DIOs frequently write inline views which can and should
be replaced by joins
– Generally can be done with little or no understanding

of underlying schema semantics
– Try /*+ MERGE */ hint first; generally doesn’t improve

performance, but worth trying
• May also help in rewrite

Merged Inline Views

• As the Cost Based Optimizer has evolved, it frequently
merges SQL inline views with the outer query

• Frequently not a performance improvement!
– Particularly with poorly written SQL inline views
– 10G’s merging is much better than 9i’s
– 11G’s is even better (but not perfect)

• Try /*+ NO_MERGE */ hint

Never Update Primary Key Columns
• Primary key (PK) columns should never be updated, even to current

value
• Common DIO approach is to update all columns in a row
• Updating PK columns forces examination of referencing foreign key

(FK) constraints on child tables
– General performance issue, even if FK columns indexed
– Results in FTS if FK columns not indexed

Avoid/Remove Unnecessary Outer Joins

• DIOs frequently add outer joins “just to be safe”
• Outer joins may be expensive, limiting CBO choices

– Be sure join columns are indexed
• Work with developer or end user to determine if outer

join is needed

EXISTS vs IN

• Replacing IN with EXISTS often produces dramatic
performance improvement

• IN by DIO typically uses uncorrelated subquery
• SELECT …

FROM table_1 outer

 WHERE

 outer.col_1 IN
(SELECT inner.col_1
FROM table_2 inner
[WHERE …])

IN Performance Issues
• IN may perform poorly

– Produces result set, effectively a materialized inline view
• CBO may replace IN with EXISTS; verify via execution plan

– Result set is unindexed
– Result set is scanned for every row in outer query
– Large result set is well known performance killer

• IN should only be used when the result set is small
• Note that if the value of outer.col_1 is NULL, it will never match the

result of the IN
– Use NVL on both the inner and outer columns if NULL must be

matched

EXISTS vs IN

• DIOs seldom know how to use EXISTS as it involves a
correlated subquery, e.g., a join between column(s) in
the outer and column(s) in the inner query

• Replace the uncorrelated subquery with a subquery by
joining the outer column from the IN clause with an
appropriate column in the subquery

EXISTS Correlated Subquery
• SELECT …

FROM table_1 outer

WHERE

EXISTS

(SELECT 'T' –- use a simple constant here
FROM table_2 inner
WHERE

outer.col_1 = inner.col_1
[AND …]) – WHERE predicates from original
query

EXISTS Correlated Subquery

• The join columns (inner.col_1 in example) from the
table in the correlated subquery should be indexed
– Check to see if appropriate indexes exist; add them if

needed
• Use a constant in the SELECT of the correlated

subquery; do not select the value of an actual column
– NULL works as “constant”, but is very confusing

• Note that SELECT DISTINCT is unnecessary for both IN
and EXISTS

Relevant Hints

• PUSH_SUBQ/NO_PUSH_SUBQ
• UNNEST/NO_UNNEST

Copyright © Jeffrey M. Jacobs, 2009, 2010 24

Subquery Factoring using WITH

• Very powerful (and virtually unknown)
• Many DIO written queries use identical subqueries/inline

views repeatedly
• Often lengthy UNIONs

Often lengthy UNIONs
SELECT …

FROM

table_1,

(SELECT … FROM table_2, table_3, … WHERE
table_2.id = table_3.id) IV

WHERE …

UNION

SELECT …

FROM

Table_4,

(SELECT … FROM table_2, table_3, … WHERE
table_2.id = table_3.id) IV

WHERE …

UNION …

Performance Issue

• Oracle’s CBO is not aware of identical nature of
subqueries (unlike programming language optimizers)
– Executes each subquery
– Returns distinct result set for each subquery
– Redundant, unnecessary work

Subquery Factoring

• Subquery factoring has two wonderful features
– Generally results in improved performance
– Always simplifies code

• Factored subquery only appears once in the code as a
preamble

– Referenced by name in main query body
• More readable, easier to maintain and modify

Syntax
/* Preamble, multiple subqueries may be defined */

WITH
pseudo_table_name_1
AS (SELECT …)
[, pseudo_table_name_2 … AS (SELECT …)]
/* Main query body */

SELECT …

 FROM pseudo_table_name_1 …

… -- typically UNIONs

Example

• Applying this to the example
/* Preamble */
WITH

IV AS
(SELECT … FROM table_2, table_3, … WHERE table_2.id

= table_3.id
/* Main query body */
SELECT …

FROM
table_1, IV –- IV is pseudo table name
WHERE …

UNION
SELECT …
FROM
Table_4, IV –- IV is pseudo table name
WHERE …

UNION …

Factoring Options
• Oracle may perform one of two operation on factored

subqueries
– Inline – performs textual substitution into main query

body
• Effectively same query as pre-factoring
• No performance improvement due to factoring
• Still more readable

– Materializing factored subquery
• Executes the factored subquery only once
• Creates true temporary table (not Global Temporary Table)

– Temp Table Transformation
• Populates temporary table with direct load INSERT from

factored subquery

Materialized Factored Subquery Issues

• Materialized Factored Subqueries (MFS) issues
CREATE TABLE for temp table at least once (on 1st
execution)

• Multiple tables may be created if query executions
overlap or child cursors created

• Tables are reused if possible
• Recursive SQL performs INSERT /*+ APPEND */
• Data is written to disk
• Doesn’t always result in performance improvement

Hints for Subquery Factoring
• /*+ Materialize */ will force materializing

– Seldom, if ever, needed
– Oracle only materializes when subquery used more than once

(but verify)
• /*+ Inline */ will force textual substitution

– Use when materializing does not improve performance
• Other hints may be used in factored subquery, e.g. INDEX, etc.

– Note that MERGE and NO_MERGE may be combined with
INLINE

• Hint follows SELECT in factored subquery
– WITH (SELECT /*+ hint */ ..) AS …

INDEX Hints
• DIO often believe everything should use indexes
• Frequent use of unqualified INDEX hint, e.g., only table name

specified, but no index
– SELECT /*+ INDEX (table_name) */
– Yes, this does work!

• Oracle will always use an index, no matter how bad
– Unclear which index will be used; documentation says “best

cost”, but unclear if true; experience suggests 1st in alphabetical
order

– Further complicated by poor indexing
• Fix by either

– Qualifying hint by specifying index name(s) or columns
– Removing hint entirely

• Removing the hint often improves performance

Constant Data Conversion Issues
• When comparing a VARCHAR2 (or CHAR) column to a constant or

bind variable, be sure to use string data type or conversion function
• Oracle does not always do what you would expect

– WHERE my_varchar2_col = 2
does not convert 2 to a string!!!

– Converts every rows’s my_varchar2_col to a number for the
comparison

• Generally results in FTS
• Common cause of “I just can’t get rid of this FTS”

• Common problem with overloaded generic and OO models
• Be aware of other type implicit type conversion functions, e.g. DATE

and TIMESTAMP!

Mixing Columns and Constants in WHERE
Clause
• Column side of WHERE clause should be “naked”,

without constants or functions
– WHERE SALARY + 1000 > :avg_sal
– Eliminates CBO ability to use index (“guesses” 5%)

• Move constants/functions to “other side”
– WHERE SALARY > :avg_sal – 1000

Copyright © Jeffrey M. Jacobs, 2009, 2010, 2012 36

Eliminate Unnecessary Lookup Joins
• Tables with unmanaged surrogate keys typically have

lookup/alternate key column(s) with consistent data across
environments
– Very common with generic and OO models

• Typical code is:
• SELECT

 FROM child_table, reference_table
 WHERE
 child_table.reference_table_id =
 reference_table.reference_table_id
 and reference_table.lookup_column = ‘constant’

 …
• Results in access to reference_table for every applicable row in

child_table

Eliminate Unnecessary Lookup Joins
• Even worse when UPPER/LOWER function applied to

lookup_column (unless appropriate functional index
exists)

• Replace with scalar subquery
SELECT
 FROM child_table
 WHERE
 child_table.reference_table_id =
(SELECT reference_table_id
FROM reference_table
WHERE
 reference_table.lookup_column = ‘constant’)

– Only performs scalar subquery once

Improving Pagination

• Pagination refers to returning row n through m from an
ordered result set using ROWNUM
– Typically for data on a web page or screen

• Common, worst case code:
SELECT t1.col_1,…

FROM
(SELECT *
 FROM table_1
 WHERE …
 ORDER BY …) t1
WHERE
 ROWNUM between n and m

Improvement Steps

1. Replace literals with bind variables
2. Replace “*” in innermost inline view with desired

columns
• Potentially reduces unnecessary I/O and sort

processing
3. Refactor the query so that inline view only returns 1st m

rows and use /*+ FIRST_ROWS (n) */ hint (per Tom
Kyte’s Effective Oracle by Design on Pagination with
ROWNUM); Tom’s hint is deprecated and should be
FIRST_ROWS(n)

Improvement Step #3
SELECT *

FROM
(SELECT /*+ FIRST_ROWS (n) */

ROWNUM AS rnum, a.*,
FROM
(SELECT t1.col_1,…
 FROM table_1

 WHERE …
 ORDER BY …) a

WHERE
 ROWNUM <= :m)

WHERE rnum > = :n

Improvement Step #4

• Replace the columns in innermost inline view with
ROWID and join to table in outermost query
– May provide substantial I/O performance

improvements on fat tables, particularly those with
inline CLOBs

Improvement Step #4
SELECT t1.col_1,…

FROM
table_1,
(SELECT /*+ FIRST_ROWS (n) */

ROWNUM AS rnum, inner_row_id
FROM

(SELECT ROWID inner_row_id -– innermost query
 FROM table_1

 WHERE …
 ORDER BY …)

WHERE
 ROWNUM <= :m)

WHERE rnum > = :n
AND table_1.ROWID = inner_row_id

UPDATE and DELETE Performance

• “I’m DELETEing/UPDATEing a few rows. It’s virtually
instantaneous when I test it in my development
environment, but takes a very long time in production!” –
Joe the DIO

• Check for indexes on FK constraint columns of child
tables.
– Lack of indexes on FK constraints requires an FTS of

each child table for each row to be
DELETEd/UPDATEd in parent table

– Common problem with history tables
• Add appropriate indexes

UPDATE and DELETE Performance

• Look for foreign key constraints using Cascade Delete
– Hierarchy of cascade deletes can result in very poor

performance
– Unclear if circular references ever complete

• Beyond scope of OMG
– Application code may depend on existence of

Cascade Delete
– Quick fix may be temporarily altering constraints

Copyright © Jeffrey M. Jacobs, 2009 45

Add Indexes on Foreign Key Constraints

• FK constraints should always be indexed
– Have not yet seen exception to this rule (but always

interested)
• Primary performance gains

– Improved join performance – fundamental feature of
CBO

• Can eliminate unnecessary joins

– UPDATE and DELETE performance
– Oracle apparently still performs table level locks,

despite statements to contrary

Copyright © Jeffrey M. Jacobs, 2009 46

Add Foreign Key Constraints
• “FK constraints hurt performance. We’ll enforce referential integrity

(RI) in the application” – Flo the DIO
– Translation: “We won’t make any mistakes in the application

code”
– Won’t really verify RI in the application

• True verification would result in worse performance
• It doesn’t matter how well the system performs if the data is corrupt!

– Earned big $ as expert witness demonstrating issues with lack of
FK constraints

• CBO uses existence of FK constraints
– Can eliminate unnecessary joins

• Adds to effective documentation of system

Eliminate Redundant Indexes
• Redundant indexes, e.g., indexes with identical leading columns

– Common DIO anti-pattern
• Impacts INSERT/UPDATE/DELETE performance
• Confuses CBO

– Unclear how CBO selects index when two (or more) have
needed leading columns, but different trailing columns

• Rules of thumb
– Eliminate index with most trailing columns
– Indexes with more than 3 columns are suspect
– PK indexes with trailing columns should be reduced to PK only

Reduce Unnecessary and Redundant Queries
• Worst real world case

– 80,000 individual queries from application takes 3+ hours
– Single query took under 30 seconds

• Individual query is not performance problem
– Total number of queries is problem

• Two general cases
1. Iteration

• DIO issues large number of SELECTs, typically performing join,
calculations or sorts in application

• Generally easy to replace with single query
2. Redundant Queries

• DIO issues same query repeatedly for unchanging data, typically
refreshing page/screen, i.e., field label

• Requires changes to application code structure
– Not usually Hero’s domain

Add Appropriate Functional Indexes

• Functional indexes (FI) are great quick fixes for many
anti-patterns

• Two common anti-patterns

Mixed case string columns

• Column contains mixed case data used for both
lookup/filtering and display
– Good design would be two columns, one for lookup

and one for display
• (Somewhat) knowledgeable DIO uses

UPPER(column_name)
– Less knowledgeable use LOWER(column_name)

• Add appropriate index(es)
– If possible, standardize queries to use one function
– May need to add both indexes :-{

Eliminating Dummy Values
• DIOs typically use dummy values in place of NULL, e.g., -99
• Queries use:

WHERE column_name <> -99
instead of
WHERE column_name IS NOT NULL

• <> kills use of index on column_name
• If significant percentage of rows contain dummy value, add functional index

to improve performance
– NULLIF(column_name,-99)

• Queries need to be modified to use function
• WHERE NULLIF(column_name,-99) IS NOT NULL

• Real world cases may involve multiple dummy values, e.g. -9, -99 and -999
(really!)
– Use DECODE, CASE or other function

Use PL/SQL for Bulk Operations

• Use of BULK COLLECT and FORALL provides huge
performance improvements over application side
operations

Summary

• Many anti-patterns easily identifiable
• Many anti-patterns subject to easy, quick and safe fixes

– OMG Tips won’t work for every query
• SQL Hero needs to be willing to modify queries and test

results
• SQL Hero needs to understand why DIOs use anti-

patterns and educate them

	OMG! Identifying and Refactoring Common SQL Performance�Anti-patterns�Jeffrey M. Jacobs�Senior Data Architect, PayPal�jmjacob@jeffreyjacobs.com��
	Qualifications
	Survey Says
	Introduction to OMG Method
	Fair Warning
	Requirements for SQL Performance Heroes
	Why OMG Method
	Anti-Patterns
	Understanding Common Design and DIOs Anti-patterns
	Understanding Common Design and DIOs Anti-patterns
	Understanding Common Design and DIOs Anti-patterns
	Avoid Dynamic SQL
	Inline Views
	Avoid/Replace Materialized Inline Views
	Avoid/Replace Materialized Inline Views
	Merged Inline Views
	Never Update Primary Key Columns
	Avoid/Remove Unnecessary Outer Joins
	EXISTS vs IN
	IN Performance Issues
	EXISTS vs IN
	EXISTS Correlated Subquery
	EXISTS Correlated Subquery
	Relevant Hints
	Subquery Factoring using WITH
	Often lengthy UNIONs
	Performance Issue
	Subquery Factoring
	Syntax
	Example
	Factoring Options
	Materialized Factored Subquery Issues
	Hints for Subquery Factoring
	INDEX Hints
	Constant Data Conversion Issues
	Mixing Columns and Constants in WHERE Clause
	Eliminate Unnecessary Lookup Joins
	Eliminate Unnecessary Lookup Joins
	Improving Pagination
	Improvement Steps
	Improvement Step #3
	Improvement Step #4
	Improvement Step #4
	UPDATE and DELETE Performance
	UPDATE and DELETE Performance
	Add Indexes on Foreign Key Constraints
	Add Foreign Key Constraints
	Eliminate Redundant Indexes
	Reduce Unnecessary and Redundant Queries
	Add Appropriate Functional Indexes
	Mixed case string columns
	Eliminating Dummy Values
	Use PL/SQL for Bulk Operations
	Summary

