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Qualifications 

• 2 centuries of experience with Oracle, as consultant and 
trainer 

• Presentation and paper available at 
www.jeffreyjacobs.com, should be available for RMOUG 
soon 

• You have one of the top 1% most viewed LinkedIn 
profiles for 2012 
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Survey Says 

• DBAs 
• Developers 
• Architects 
• Heavily non-Oracle development shop 
• Concerned with performance 
• Access to production size database 
• Easy access to running traces, Enterprise Manager 



Introduction to OMG Method 

• OMG Method focuses on  
– Refactoring SQL 
– Indexing 
– Refactoring application side code 
– Hinting “suggestions” ( not a hinting presentation) 

• See Maria Colgan’s Oracle Optimizer…, Wed, 1:30  

• OMG Method targets performance problems created by 
Developers Inexperienced in Oracle technologies (DIO) 

• OMG Method requires no DBA privileges other than 
indexing 
– No tracing 



Fair Warning 

• No demos 
• No “proofs” 
• Quick fixes 
• Based on multiple experiences over many years from 

real world 
 



Requirements for SQL Performance Heroes 

• Good SQL fundamentals 
• Able to read basic explain plans 
• Understand basic performance statistics from autotrace 
• Courage to make and test changes 

– Don’t take my word for it! 
• Willingness to work with and educate DIOs 
 



Why OMG Method 

• Vast majority of performance problems are result of 
DIOs’ 
– Lack of training in SQL and Oracle 
– Lack of interest in SQL and Oracle 
– Misinformation about SQL and Oracle performance 
– Resistance to PL/SQL 
– Focus on OO, procedural and functional programming 

techniques 
• Iterative thinking vs set thinking 



Anti-Patterns 
• Definition 

– Common SQL or design practice that results in poor 
performance 

• OMG Method identifies common anti-patterns and 
techniques to fix them 
– Always verify that OMG fixes actually improve 

performance 
• OMG Method does not address schema design 

problems 
– No changes to tables or columns 
– Statistics are “good” 

 



Understanding Common Design and DIOs 
Anti-patterns 
• Overly Generic Data Models 

– OBJECT, INSTANCE, ATTRIBUTE, 
ATTRIBUTE_VALUE structures 

• Fat, Unnormalized Tables 
– Often with in-line CLOBs 

• Fear of Joins 
– “Joins are to be avoided a all costs” mentality 

• Failure to Understand SQL query cost in application 
code 

• Iterative vs Set World View 



Understanding Common Design and DIOs 
Anti-patterns 
• Unmanaged Surrogate Primary Keys 

– (Nearly) all tables have surrogate primary keys 
– Values for same row is not consistent across 

environments, e.g., COMPANY_ID value for same 
company differs across production, development, test 
environments 

– Typically use additional lookup columns 
• Widespread use of Dummy values instead of NULL 

– DIOs uncomfortable using NULL 
– Misunderstanding of performance issues with NULL 

 



Understanding Common Design and DIOs 
Anti-patterns 
• “Indexed searches are always better” 
• Lack of documentation, i.e. What does this query do? 



Avoid Dynamic SQL 
• Avoid/eliminate dynamic SQL, e.g. creation and 

execution of SQL queries created by concatenating 
strings 
– Particularly problematic when using literals for 

constants 
• Use prepared statements with bind variable 
• Dynamic SQL results in heavy parsing overhead and 

SGA memory usage 
– Child cursors may be created even if the only 

differences between SQL queries is literal values 
– Potential for SQL Injection 



Inline Views 

• In SQL code, an inline view is a subquery used in place 
of a table, e.g., 
SELECT … 
  FROM 

(SELECT …) 
  … 



Avoid/Replace Materialized Inline Views 

• Inline views typically results in an “inline view” being 
created in the execution plan  
– Referred to as materialized inline view (MIV) 

• Oracle may also merge the SQL inline view with the 
outer query 

• MIVs produce a result set, e.g., a temporary table (not to 
be confused with Global Temporary Table) 
– MIVs are never indexed 
– Joins with a MIV effectively perform a Full Table Scan 

(FTS) against the MIV, e.g. multiple FTS! 
• Poor performance if result set is large 



Avoid/Replace Materialized Inline Views 

• DIOs frequently write inline views which can and should 
be replaced by joins 
– Generally can be done with little or no understanding 

of underlying schema semantics 
– Try /*+ MERGE */ hint first; generally doesn’t improve 

performance, but worth trying 
•  May also help in rewrite 



Merged Inline Views 

• As the Cost Based Optimizer has evolved, it frequently 
merges SQL inline views with the outer query 

• Frequently not a performance improvement! 
– Particularly with poorly written SQL inline views 
– 10G’s merging is much better than 9i’s 
– 11G’s is even better (but not perfect) 

• Try /*+ NO_MERGE */ hint 
 



Never Update Primary Key Columns 
• Primary key (PK) columns should never be updated, even to current 

value 
• Common DIO approach is to update all columns in a row 
• Updating PK columns forces examination of referencing foreign key 

(FK) constraints on child tables 
– General performance issue, even if FK columns indexed 
– Results in FTS if FK columns not indexed 
 



Avoid/Remove Unnecessary Outer Joins 

• DIOs frequently add outer joins “just to be safe” 
• Outer joins may be expensive, limiting CBO choices 

– Be sure join columns are indexed 
• Work with developer or end user to determine if outer 

join is needed 



EXISTS vs IN 

• Replacing IN with EXISTS often produces dramatic 
performance improvement 

• IN by DIO typically uses uncorrelated subquery 
• SELECT … 

FROM table_1 outer 

 WHERE 

 outer.col_1 IN 
(SELECT inner.col_1 
FROM table_2 inner 
[WHERE …]) 



IN Performance Issues 
• IN may perform poorly 

– Produces result set, effectively a materialized inline view 
• CBO may replace IN with EXISTS; verify via execution plan 

– Result set is unindexed 
– Result set is scanned for every row in outer query 
– Large result set is well known performance killer 

• IN should only be used when the result set is small 
• Note that if the value of outer.col_1 is NULL, it will never match the 

result of the IN 
– Use NVL on both the inner and outer columns if NULL must be 

matched 



EXISTS vs IN 

• DIOs seldom know how to use EXISTS as it involves a 
correlated subquery, e.g., a join between column(s) in 
the outer and column(s) in the inner query 

• Replace the uncorrelated subquery with a subquery by 
joining the outer column from the IN clause with an 
appropriate column in the subquery 



EXISTS Correlated Subquery 
• SELECT …  

FROM table_1 outer 

WHERE  

EXISTS  

(SELECT 'T' –- use a simple constant here 
FROM table_2 inner 
WHERE 

outer.col_1 = inner.col_1 
[AND …]) – WHERE predicates from original 
query 



EXISTS Correlated Subquery 

• The join columns (inner.col_1 in example) from the 
table in the correlated subquery should be indexed 
– Check to see if appropriate indexes exist; add them if 

needed 
• Use a constant in the SELECT of the correlated 

subquery; do not select the value of an actual column 
– NULL works as “constant”, but is very confusing 

• Note that SELECT DISTINCT is unnecessary for both IN 
and EXISTS 



Relevant Hints 

• PUSH_SUBQ/NO_PUSH_SUBQ 
• UNNEST/NO_UNNEST 
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Subquery Factoring using WITH 

• Very powerful (and virtually unknown) 
• Many DIO written queries use identical subqueries/inline 

views repeatedly 
• Often lengthy UNIONs 



Often lengthy UNIONs 
SELECT … 

FROM 

table_1, 

(SELECT … FROM table_2, table_3, … WHERE 
table_2.id = table_3.id) IV 

WHERE … 

UNION 

SELECT … 

FROM 

Table_4, 

(SELECT … FROM table_2, table_3, … WHERE 
table_2.id = table_3.id) IV 

WHERE … 

UNION … 



Performance Issue 

• Oracle’s CBO is not aware of identical nature of 
subqueries (unlike programming language optimizers) 
– Executes each subquery 
– Returns distinct result set for each subquery 
– Redundant, unnecessary work 

 



Subquery Factoring 

• Subquery factoring has two wonderful features 
– Generally results in improved performance 
– Always simplifies code 

• Factored subquery only appears once in the code as a 
preamble 

– Referenced by name in main query body 
• More readable, easier to maintain and modify 



Syntax 
/* Preamble, multiple subqueries may be defined */ 

WITH 
pseudo_table_name_1 
AS (SELECT …)  
[, pseudo_table_name_2 … AS (SELECT …)] 
/* Main query body */ 

SELECT … 

  FROM pseudo_table_name_1 … 

… -- typically UNIONs 



Example 

• Applying this to the example 
/* Preamble */ 
WITH 

IV AS 
(SELECT … FROM table_2, table_3, … WHERE table_2.id 

= table_3.id 
/* Main query body */ 
SELECT … 

FROM 
table_1, IV –- IV is pseudo table name 
WHERE … 

UNION 
SELECT … 
FROM 
Table_4, IV –- IV is pseudo table name 
WHERE … 

UNION … 



Factoring Options  
• Oracle may perform one of two operation on factored 

subqueries 
– Inline – performs textual substitution into main query 

body 
• Effectively same query as pre-factoring 
• No performance improvement due to factoring 
• Still more readable 

– Materializing factored subquery 
• Executes the factored subquery only once 
• Creates true temporary table (not Global Temporary Table) 

– Temp Table Transformation 
• Populates temporary table with direct load INSERT from 

factored subquery 
 



Materialized Factored Subquery Issues 

• Materialized Factored Subqueries (MFS) issues 
CREATE TABLE for temp table at least once (on 1st 
execution) 

• Multiple tables may be created if query executions 
overlap or child cursors created 

• Tables are reused if possible 
• Recursive SQL performs INSERT /*+ APPEND */ 
• Data is written to disk 
• Doesn’t always result in performance improvement 



Hints for Subquery Factoring 
• /*+ Materialize */ will force materializing 

– Seldom, if ever, needed 
– Oracle only materializes when subquery used more than once 

(but verify) 
• /*+ Inline */ will force textual substitution 

– Use when materializing does not improve performance 
• Other hints may be used in factored subquery, e.g. INDEX, etc. 

– Note that MERGE and NO_MERGE may be combined with 
INLINE 

• Hint follows SELECT in factored subquery 
– WITH (SELECT /*+ hint */ ..) AS … 



INDEX Hints 
• DIO often believe everything should use indexes 
• Frequent use of unqualified INDEX hint, e.g., only table name 

specified, but no index 
– SELECT /*+ INDEX (table_name) */ 
– Yes, this does work! 

• Oracle will always use an index, no matter how bad 
– Unclear which index will be used; documentation says “best 

cost”, but unclear if true; experience suggests 1st in alphabetical 
order 

– Further complicated by poor indexing 
• Fix by either 

– Qualifying hint by specifying index name(s) or columns 
– Removing hint entirely 

• Removing the hint often improves performance 



Constant Data Conversion Issues 
• When comparing a VARCHAR2 (or CHAR) column to a constant or 

bind variable, be sure to use string data type or conversion function 
• Oracle does not always do what you would expect 

– WHERE my_varchar2_col = 2 
does not convert 2 to a string!!! 

– Converts every rows’s my_varchar2_col to a number for the 
comparison 

• Generally results in FTS 
• Common cause of “I just can’t get rid of this FTS” 

• Common problem with overloaded generic and OO models 
• Be aware of other type implicit type conversion functions, e.g. DATE 

and TIMESTAMP! 



Mixing Columns and Constants in WHERE 
Clause 
• Column side of WHERE clause should be “naked”, 

without constants or functions 
– WHERE SALARY + 1000 > :avg_sal 
– Eliminates CBO ability to use index (“guesses” 5%) 

• Move constants/functions to “other side” 
– WHERE SALARY > :avg_sal – 1000 
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Eliminate Unnecessary Lookup Joins 
• Tables with unmanaged surrogate keys typically have 

lookup/alternate key column(s) with consistent data across 
environments 
– Very common with generic and OO models 

• Typical code is: 
• SELECT    

 FROM child_table, reference_table 
 WHERE 
 child_table.reference_table_id =      
  reference_table.reference_table_id 
 and reference_table.lookup_column = ‘constant’ 

  … 
• Results in access to reference_table for every applicable row in 

child_table 



Eliminate Unnecessary Lookup Joins 
• Even worse when UPPER/LOWER function applied to 

lookup_column (unless appropriate functional index 
exists) 

• Replace with scalar subquery 
SELECT    
 FROM child_table 
 WHERE 
 child_table.reference_table_id =  
(SELECT reference_table_id 
FROM reference_table 
WHERE 
 reference_table.lookup_column = ‘constant’ ) 

– Only performs scalar subquery once 



Improving Pagination 

• Pagination refers to returning row n through m from an 
ordered result set using ROWNUM 
– Typically for data on a web page or screen 

• Common, worst case code: 
SELECT t1.col_1,… 

FROM 
(SELECT * 
 FROM table_1 
 WHERE … 
 ORDER BY …) t1 
WHERE 
 ROWNUM between n and m 



Improvement Steps 

1. Replace literals with bind variables 
2. Replace “*” in innermost inline view with desired 

columns 
• Potentially reduces unnecessary I/O and sort 

processing 
3. Refactor the query so that inline view only returns 1st m 

rows and use  /*+ FIRST_ROWS (n) */ hint (per Tom 
Kyte’s Effective Oracle by Design on Pagination with 
ROWNUM ); Tom’s hint is deprecated and should be 
FIRST_ROWS(n) 



Improvement Step #3 
SELECT * 

FROM 
(SELECT /*+ FIRST_ROWS (n) */  

ROWNUM AS rnum, a.*, 
FROM 
(SELECT t1.col_1,… 
 FROM table_1 

 WHERE … 
 ORDER BY …) a 

WHERE 
 ROWNUM <= :m) 

WHERE rnum > = :n 



Improvement Step #4 

• Replace the columns in innermost inline view with 
ROWID and join to table in outermost query 
– May provide substantial I/O performance 

improvements on fat tables, particularly those with 
inline CLOBs 



Improvement Step #4 
SELECT t1.col_1,… 

FROM 
table_1, 
(SELECT /*+ FIRST_ROWS (n) */  

ROWNUM AS rnum, inner_row_id 
FROM 

(SELECT ROWID inner_row_id -– innermost query 
 FROM table_1 

 WHERE … 
 ORDER BY …) 

WHERE 
 ROWNUM <= :m) 

WHERE rnum > = :n 
AND table_1.ROWID = inner_row_id 



UPDATE  and DELETE Performance 

• “I’m DELETEing/UPDATEing a few rows.  It’s virtually 
instantaneous when I test it in my development 
environment, but takes a very long time in production!” – 
Joe the DIO 

• Check for indexes on FK constraint  columns of child 
tables. 
– Lack of indexes on FK constraints requires an FTS of 

each child table for each row to be 
DELETEd/UPDATEd in parent table 

– Common problem with history tables 
• Add appropriate indexes 



UPDATE  and DELETE Performance 

• Look for foreign key constraints using Cascade Delete 
– Hierarchy of cascade deletes can result in very poor 

performance 
– Unclear if circular references ever complete 

• Beyond scope of OMG 
– Application code may depend on existence of 

Cascade Delete 
– Quick fix may be temporarily altering constraints 
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Add Indexes on Foreign Key Constraints 

• FK constraints should always be indexed 
– Have not yet seen exception to this rule (but always 

interested) 
• Primary performance gains 

– Improved join performance – fundamental feature of 
CBO 

• Can eliminate unnecessary joins 

– UPDATE and DELETE performance 
– Oracle apparently still performs table level locks, 

despite statements to contrary 
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Add Foreign Key Constraints 
• “FK constraints hurt performance.  We’ll enforce referential integrity 

(RI) in the application” – Flo the DIO 
– Translation: “We won’t make any mistakes in the application 

code” 
– Won’t really verify RI in the application 

• True verification would result in worse performance 
• It doesn’t matter how well the system performs if the data is corrupt! 

– Earned big $ as expert witness demonstrating issues with lack of 
FK constraints 

• CBO uses existence of FK constraints 
– Can eliminate unnecessary joins 

• Adds to effective documentation of system 



Eliminate Redundant Indexes 
• Redundant indexes, e.g., indexes with identical leading columns 

– Common DIO anti-pattern 
• Impacts INSERT/UPDATE/DELETE performance 
• Confuses CBO 

– Unclear how CBO selects index when two (or more) have 
needed leading columns, but different trailing columns 

• Rules of thumb 
– Eliminate index with most trailing columns 
– Indexes with more than 3 columns are suspect 
– PK indexes with trailing columns should be reduced to PK only 



Reduce Unnecessary and Redundant Queries 
• Worst real world case 

– 80,000 individual queries from application takes 3+ hours 
– Single query took under 30 seconds 

• Individual query is not performance problem 
– Total number of queries is problem 

• Two general cases 
1. Iteration 

• DIO issues large number of SELECTs, typically performing join, 
calculations or sorts in application 

• Generally easy to replace with single query 
2. Redundant Queries 

• DIO issues same query repeatedly for unchanging data, typically 
refreshing page/screen, i.e., field label 

• Requires changes to application code structure 
– Not usually Hero’s domain 



Add Appropriate Functional Indexes 

• Functional indexes (FI) are great quick fixes for many 
anti-patterns 

• Two common anti-patterns 



Mixed case string columns 

• Column contains mixed case data used for both 
lookup/filtering and display 
– Good design would be two columns, one for lookup 

and one for display 
• (Somewhat) knowledgeable DIO uses 

UPPER(column_name) 
– Less knowledgeable use LOWER(column_name) 

• Add appropriate index(es) 
– If possible, standardize queries to use one function 
– May need to add both indexes :-{ 



Eliminating Dummy Values 
• DIOs typically use dummy values in place of NULL, e.g., -99 
• Queries use: 

WHERE column_name <> -99 
instead of 
WHERE column_name IS NOT NULL 

• <> kills use of index on column_name 
• If significant percentage of rows contain dummy value, add functional index 

to improve performance 
– NULLIF(column_name,-99) 

• Queries need to be modified to use function 
• WHERE NULLIF(column_name,-99) IS NOT NULL 

• Real world cases may involve multiple dummy values, e.g. -9, -99 and -999 
(really!) 
– Use DECODE, CASE or other function 



Use PL/SQL for Bulk Operations 

• Use of BULK COLLECT and FORALL provides huge 
performance improvements over application side 
operations 



Summary 

• Many anti-patterns easily identifiable 
• Many anti-patterns subject to easy, quick and safe fixes 

– OMG Tips won’t work for every query 
• SQL Hero needs to be willing to modify queries and test 

results 
• SQL Hero needs to understand why DIOs use anti-

patterns and educate them 
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