
Development

Copyright © Jeffrey M. Jacobs, 2012 1 Session #238

AAPPPPLLIICCAATTIIOONN DDEEVVEELLOOPPMMEENNTT WWIITTHH OORRAACCLLEE AADDVVAANNCCEEDD QQUUEEUUIINNGG

Jeffrey Jacobs, PayPal

INTRODUCTION
This paper and corresponding presentation are intended to provide the reader and attendee with an understanding of the basic
features and capabilities of Oracle Advanced Queuing (AQ) for consideration in application development. It does not cover
all of the features and capabilities of Oracle AQ. The reader is cautioned that the author is neither omniscient nor infallible.
The reader should consult the Oracle documentation (Oracle® Streams Advanced Queuing User's Guide and Oracle®
Database PL/SQL Packages and Types Reference) prior to beginning application development.
Oracle AQ provided PL/SQL, OCI, JMS and SOAP APIs. While the all offer virtually identical functionality, this paper and
presentation refers only the PL/SQL packages, DBMS_AQ and DBMS_AQADM.

WHAT IS MESSAGING?
Messaging is the ability to send a message containing data from one application/process to another application/process. It is
a widely used technique in distributed systems, particularly high volume OLTP systems. Unlike client server applications,
which are typically synchronous, messaging is typically asynchronous, i.e. the sender, referred to as the producer, is not blocked
waiting for a reply from the recipient(s), referred to as consumer(s). Oracle Advance Queuing (AQ) does not support
synchronous messaging.
Messaging has many uses and advantages. It allows applications and systems to communicate and co-operate in an API
independent manner. An order entry system may send a message containing order information to a fulfillment system without
requiring access to internal APIs. The same message may also simultaneously be routed to an inventory management system,
a customer support application, an email acknowledgment application, etc.
Messages are placed into queues, called enqueuing. The enqueuing applications are called the producers. There is typically no
restriction on the number of producers for a given queue.
The application data portion of the message is referred to as the payload.
Messages are read and removed from the queue by dequeuing the message. Applications dequeuing messages are referred to as
consumers.
There are three general categories of messaging:

 Single consumer, a.k.a., point-to-point - a message is dequeued by a single consumer

 Multicast - the producer effectively names designated consumers for the message

 Broadcast - consumers may dynamically gain access to a message queue by subscribing
A robust messaging systems supports a wide variety of features in addition to those describe above. These include:

 Error handling

 Timeouts and expirations

 Enqueuing/dequeuing of messages as a group

 Dequeueing messages by criteria other than FIFO, including, but not limited to:

 Enqueue time

 Priority

 Contents of messages

 Reliability

 Propagation - pushing messages to destinations

 Other queues

Development

Copyright © Jeffrey M. Jacobs, 2012 2 Session #238

 Other databases

 Other messaging systems (JMS, middleware, gateways)

 Retention of messages and history of actions

 Non-repudiation

 Logging

 Performance evaluation

 Warehousing

 Wide range of message content data types (aka payload), including:

 Text

 XML

 BLOB, LOB, CLOB

 Structured records

 Notification to consumers of message availability

 Guaranteed delivery

 High performance
Oracle AQ provides all of this functionality.
In addition, Oracle AQ also provides the ability to browse messages without dequeuing.

QUEUE TYPES
Oracle AQ provides the three types of messaging describe above via two basic types of queues, single consumer queues and multi-
consumer queues. A multi-consumer queue may provide both multicast and broadcast capabilities.
All queues allow any application with appropriate permissions to enqueue messages.
In a single consumer queue, a given message is dequeued by only one consumer, after which it is removed from the queue.
However, multiple consumers may dequeue from the queue, e.g. multiple instance of an application, such a multiple instances
of a fulfillment application processing messages from a single order queue.
Single consumer queues have the simplest underlying structure and, when used appropriately, typically offer the highest
performance.
Queues need to be started after creation via START_QUEUE. Queues can be stopped via STOP_QUEUE. Both procedures
allow control of enqueuing and dequeuing separately.
For multi-consumer queues, the determination as to whether a message is broadcast or multicast is made at the time the
message is enqueued; it is not a property of the queue itself.

MESSAGE STATES
A message may be in one of the following states:

 READY – message is available to be dequeued

 WAITING – availability for dequeuing is delayed

 EXPIRED – message has timed out and been moved to exception queue

 PROCESSED – message has been consumed by all consumers

BUFFERED MESSAGING
Buffered messaging is a light weight, non-persistent form of messaging, which can be specified at the time of enqueuing. It is
generally only memory resident, and does not support many of the features that are available for persistent messaging. In
particular, buffered messages do not support:

 Grouping

 Retention

 Guaranteed delivery

Development

Copyright © Jeffrey M. Jacobs, 2012 3 Session #238

 Array dequeuing

ADVANCED QUEUING (AQ) TABLES
An AQ table is an abstract object type, which may be implemented by one or more underlying tables, indexes and index
organized tables depending on whether the AQ table supports single or multi-consumer queues.
An AQ table typically holds one or more queues, which can be created and destroyed dynamically.
Multi-consumer AQ tables typically require more management and overhead.
AQ tables are created by:
DBMS_AQADM.CREATE_QUEUE_TABLE(

queue_table IN VARCHAR2,
queue_payload_type IN VARCHAR2,
[storage_clause IN VARCHAR2 DEFAULT NULL,]
sort_list IN VARCHAR2 DEFAULT NULL,
multiple_consumers IN BOOLEAN DEFAULT FALSE,
message_grouping IN BINARY_INTEGER DEFAULT NONE,
comment IN VARCHAR2 DEFAULT NULL,
primary_instance IN BINARY_INTEGER DEFAULT 0,
secondary_instance IN BINARY_INTEGER DEFAULT 0,
compatible IN VARCHAR2 DEFAULT NULL,
secure IN BOOLEAN DEFAULT FALSE);

The relevant parameters are described below:

 queue_table – AQ table name

 queue_payload_type – payload type

 storage_clause – any valid storage clause. Tablespace should always be specified. Oracle recommends using ASSM.
If ASSM is not used, INITRANS and PCTFREE may be set if needed for extremely high transaction queues; this has not
been necessary in the author's experience.

 sort_list – determines the order in which messages are normally dequeued. It applied to all queues and governs the
generation of the underlying queries. This can be overridden by certain dequeuing options, but it cannot be changed after
creation. The default is enqueue time, which is effectively FIFO.

 multiple_consumers – ‘TRUE’ or ‘FALSE’. All queues in the AQ table are of this type.

 message_grouping – ‘NONE’ or ‘TRANSACTIONAL.
If TRANSACTIONAL, all messages enqueued in one transaction may be treated as a group when dequeuing. See Transaction
Protection below.

 comment – a description of the AQ table which will be stored in the data dictionary.

 primary_instance – primary owner of the queue table service (RAC); see RAC Considerations below.

 secondary_instance – secondary owner of the queue table service (RAC); ; see RAC Considerations below.

 compatible – lowest database version compatibility (only 10gR2 and later are covered in this paper).

 secure – ‘TRUE’ for secure queues (not covered in this paper).

RAC CONSIDERATIONS
Each AQ table effectively creates a service. AQ table structures are typically hot tables with a great potential for hot blocks.
To avoid performance issues caused by cache contention, the services should be pinned to a single node (aka node affinity).
primary_instance specifies the preferred instance on which the service will run. secondary_instance - specifies the
preferred instance if primary instance is not available. If neither instance is available, a "random" instance is selected.

CREATING QUEUES
Queues are created via:
DBMS_AQADM.CREATE_QUEUE (

queue_name IN VARCHAR2,
queue_table IN VARCHAR2,

Development

Copyright © Jeffrey M. Jacobs, 2012 4 Session #238

queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
max_retries IN NUMBER DEFAULT NULL,
retry_delay IN NUMBER DEFAULT 0,
retention_time IN NUMBER DEFAULT 0,
dependency_tracking IN BOOLEAN DEFAULT FALSE,
comment IN VARCHAR2 DEFAULT NULL,
auto_commit IN BOOLEAN DEFAULT TRUE);

The parameters are described below:

 queue_name – the name of the queue.

 queue_table – the name of the AQ table holding queue.

 queue_type – NORMAL_QUEUE or EXCEPTION_QUEUE.

 max_retries – the maximum number of dequeue retries before moving to exception queue; see Transaction Protection
below.

 retry_delay – after a failure (usually ROLLBACK), the number of seconds before message will be available for
dequeuing again.

 retention_time – the time the message remains in the queue table after dequeuing.

 dependency_tracking - not currently implemented

 comment – Queue documentation, which is kept in the data dictionary.

 auto_commit - deprecated;

ENQUEUE OPTIONS AND FEATURES
There is a wide range of options for enqueuing messages. These options include, but are not limited to:

 Enqueuing a single message.

 Enqueuing an array of messages (PL/SQL or OCI).

 Message Grouping, which treats all messages enqueued in a single transaction as a group.

 Sender Identification.

 Time Specification and Scheduling of message delivery.

 Correlation Identifier, which allows multiple messages queued with a user defined identifier to be dequeued together.

ENQUEUING MESSAGE
The following PL/SQL API is used to enqueue messages:
DBMS_AQ.ENQUEUE(

queue_name IN VARCHAR2,
enqueue_options IN enqueue_options_t,
message_properties IN message_properties_t,
payload IN "type_name",
msgid OUT RAW);

 queue_name – the name of the queue in which the message is to be enqueued.

 payload - the type definition of the payload, typically, but not limited to, a PL/SQL abstract type

 msg_id - the unique identifier of the message

DBMS_AQ.ENQUEUE_OPTIONS_T
The DBMS_AQ.ENQUEUE_OPTIONS_T record contains the options for enqueuing the message as described below:
TYPE SYS.ENQUEUE_OPTIONS_T IS RECORD (

visibility BINARY_INTEGER DEFAULT ON_COMMIT,
relative_msgid RAW(16) DEFAULT NULL,
sequence_deviation BINARY_INTEGER DEFAULT NULL,
transformation VARCHAR2(61) DEFAULT NULL,
delivery_mode PLS_INTEGER NOT NULL DEFAULT PERSISTENT);

Development

Copyright © Jeffrey M. Jacobs, 2012 5 Session #238

The attributes are:

 visibility

 ON_COMMIT - the message is enqueued as part of the transaction, i.e. enqueuing the message is completed by
COMMIT.

 IMMEDIATE – the message is enqueued immediately in an autonomous transaction.

 transformation - Specifies a transformation function to be performed before enqueuing (not covered in this paper).
 delivery_mode

 PERSISTENT - the message is stored in the queue table.

 BUFFERED - the message is only maintained in memory, and may be lost in the event of system failure or database
shutdown.

 sequence_deviation - deprecated as of 10.2

 relative_msg_id – effectively deprecated.

 sequence_deviation – effectively deprecated.

DBMS_AQ.MESSAGE_PROPERTIES_T
The DBMS_AQ.MESSAGE_PROPERTIES_T record is used for both enqueuing and dequeuing operations
TYPE message_properties_t IS RECORD (

priority BINARY_INTEGER NOT NULL DEFAULT 1,
delay BINARY_INTEGER NOT NULL DEFAULT NO_DELAY,
expiration BINARY_INTEGER NOT NULL DEFAULT NEVER,
correlation VARCHAR2(128) DEFAULT NULL,
attempts BINARY_INTEGER,
recipient_list AQ$_RECIPIENT_LIST_T,
exception_queue VARCHAR2(61) DEFAULT NULL,
enqueue_time DATE,
state BINARY_INTEGER,
sender_id SYS.AQ$_AGENT DEFAULT NULL,
original_msgid RAW(16) DEFAULT NULL,
signature aq$_sig_prop DEFAULT NULL,
transaction_group VARCHAR2(30) DEFAULT NULL,
user_property SYS.ANYDATA DEFAULT NULL
delivery_mode PLS_INTEGER NOT NULL DEFAULT DBMS_AQ.PERSISTENT);

The relevant enqueue attributes are:

 priority – the priority of the message. This is only relevant if the sorting method specified for the table includes the
priority.

 delay – specifies number of seconds before a message is available for dequeuing. Default is 0 (NO_DELAY)

 expiration – the number of seconds a message is available for dequeuing (after delay). If the message is not dequeued
by all subscribers, it will be moved to the exception queue with a status of EXPIRED. This is necessary for multi-
consumer queues, as not all subscribers may be able to dequeue the message. Default is the constant NEVER.
delivery_mode - DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT, determines if the message is buffered or
persistent. The default is persistent.

 correlation - the ID used for dequeuing by correlation ID. This is a producer supplied value, which allows a logical
grouping of messages. Unlike a transaction group, the messages need not be enqueued in a single transaction or by the
same producer.

DEQUEUING FEATURES
Oracle AQ provides very high performance and functionality. Key features include:

 Concurrent dequeues

Development

Copyright © Jeffrey M. Jacobs, 2012 6 Session #238

 Multiple dequeue methods and options

 Array dequeue

 Message navigation

 Waiting for messages

 Retries with delays

 Transaction protection

 Exception queues

DBMS_AQ.DEQUEUE
The PL/SQL API is:
DBMS_AQ.DEQUEUE(

queue_name IN VARCHAR2,
dequeue_options IN dequeue_options_t,
message_properties OUT message_properties_t,
payload OUT "type_name",
msgid OUT RAW);

Note that message_properties_t is used for both enqueue and dequeue operations.

DEQUEUE_OPTIONS_T
TYPE DEQUEUE_OPTIONS_T IS RECORD (

consumer_name VARCHAR2(30) DEFAULT NULL,
dequeue_mode BINARY_INTEGER DEFAULT REMOVE,
navigation BINARY_INTEGER DEFAULT NEXT_MESSAGE,
visibility BINARY_INTEGER DEFAULT ON_COMMIT,
wait BINARY_INTEGER DEFAULT FOREVER,
msgid RAW(16) DEFAULT NULL,
correlation VARCHAR2(128) DEFAULT NULL,
deq_condition VARCHAR2(4000) DEFAULT NULL,
signature aq$_sig_prop DEFAULT NULL,
transformation VARCHAR2(61) DEFAULT NULL,
delivery_mode PLS_INTEGER DEFAULT PERSISTENT);

The DBMS.AQ.DEQUEUE_OPTIONS_T specifies the dequeuing options as described below:

 consumer_name – the name of the subscriber.
 dequeue_mode. Modes include:

 REMOVE (with data) – this is the typical dequeuing method. The message may remain in the queue table for history
based on retention period, but it not eligible for future dequeuing (unless via msg_id).

 REMOVE_NODATA – no data is returned, but the message is removed from queue. This may be used for selective
cleanup.

 BROWSE – reads the message data, but does not actually dequeue the message. The message remains available for
future processing (unless dequeued by another process). Browsing may not be repeatable, and as such there are
numerous "gotchas" to be aware of.

 navigation – there are two methods for navigation when dequeuing.

 FIRST_MESSAGE - This creates a “snapshot” (effectively a cursor); note that this only retrieves messages that were
enqueued at the time of the dequeue call.

 NEXT_MESSAGE – If FIRST_MESSAGE was used, this retrieves the next message in the snapshot. See Default
Dequeuing below.

 wait – if no messages are available, the consumer may wait for the next message. The options are:

 FOREVER – waits forever, which is the default. Typically used for high frequency queues. Note that this blocks the
process.

Development

Copyright © Jeffrey M. Jacobs, 2012 7 Session #238

 NO_WAIT – don’t wait for next message. Typically used for deferred or batch operations, which are initiated by jobs
scheduled at regular intervals.

 Number – the wait time in seconds. Process is blocked while waiting.
The next message is dequeued on wake up.
NOTE BENE: Oracle AQ also offers the ability for a process to listen on multiple queues; the functionality is outside the
scope of this paper.

DEQUEUE METHODS
There are several methods for dequeuing messages. The default is to dequeue individual messages based on the sort order
specified when the AQ table was created.

NOTE BENE: the most efficient navigation method for dequeuing based on the sort order is to use NEXT_MESSAGE without
FIRST_MESSAGE. FIRST_MESSAGE always performs a query. However, if NEXT_MESSAGE is used without
FIRST_MESSAGE, it will only perform one SELECT in the session; subsequent calls are simple fetches.

Other methods are:

 Correlation ID – dequeue series of message based on correlation as follows:

 Get correlation id by dequeuing using FIRST_MESSAGE. Dequeue additional messages via NEXT_MESSAGE using
the value of correlation until no more messages remain.

 The specification for correlation may use pattern matching (%,_).
This method typically requires the addition of an index and generation of statistics to force the underlying queries to use the
index on the correlation column..

 Transaction group – similar to correlation, but uses transaction_group set by producer. Should use array dequeuing,
but may use same loop as Correlation ID above, but specifying the transaction_group. Pattern matching may also be
used.

 deq_condition– similar to SQL WHERE clause, accesses contents of payload object elements or other columns.
See documentation for more details about specifying columns and payload elements. Note that using the method
supersedes all other methods.

 msgid - dequeue a single message by system-assigned RAW value. This typically requires browsing the queue(s), and is
usually used for cleanup and corrections.

DEQUEUE VISIBILITY
Messages may be dequeued in the following modes:

 IMMEDIATE – Messages are removed from the queue in an autonomous transaction. If the application does not have
retry capabilities, this will typically offer better performance and scalability

 ON_COMMIT (transaction protection) - Messages are removed from the queue on COMMIT of the transaction. The
dequeue operation is treated in the same manner as an INSERT/UPDATE/DELETE. If the transaction fails, either due to
ROLLBACK, system failure or shutdown, the retry count is incremented. If the retry count is exceeded, the message is
moved to the exception queue, otherwise it remains in the original queue. Note that a system failure or shutdown may not
increment the retry count. If retry_delay was specified when the queue was created, the message will not be available
for dequeuing for the specified number of seconds.

MESSAGE EXPIRATION
If expiration is specified in message_properties_t.expiration, all consumers must dequeue the message before
expiration time. Otherwise, the message is moved to the exception queue. It is generally a good practice to specify
expiration for multi-consumer queues, as not all consumers may be active, which would result in the message remaining in
the queue indefinitely.

Development

Copyright © Jeffrey M. Jacobs, 2012 8 Session #238

EXCEPTION QUEUES
Each AQ table has at least one exception queue which contains messages that have expired or exceeded retry count from all of
the other queues. Messages in an exception queue may be dequeued once by only one consumer for reprocessing. Exception
queues should be monitored and periodically emptied either for reprocessing or simply free space.

PROPAGATION
Messages may be pushed to other queues via propagation. Those queues typically, but not always, exist in another database or an
external messaging system; the latter is beyond the scope of this paper. Propagation may also be to queues in the same
database. The messages are ultimately processed by consumers of the destination queue(s); propagated messages are
considered process upon completion of propagation. Propagation may push messages to multiple queues in multiple targets
(fan out). Messages may also be propagated from multiple sources into a single queue. The destination queue may be single
or multi-consumer, but must be of the same payload type. Propagation is performed by scheduled jobs. A propagation window is
a period of time in which propagation can occur, i.e. effectively scheduling the job.
There are two basic modes for propagation between databases:

 Queue to dblink – Effectively deprecated.

 Queue to queue – the target queues are specified.
The API to schedule propagation is:
DBMS_AQADM.SCHEDULE_PROPAGATION (

queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
start_time IN DATE DEFAULT SYSDATE,
duration IN NUMBER DEFAULT NULL,
next_time IN VARCHAR2 DEFAULT NULL,
latency IN NUMBER DEFAULT 60,
destination_queue IN VARCHAR2 DEFAULT NULL);

The parameters are:

 queue_name – the name of the queue to be propagated.

 destination – destination dblinks.

 start_time – the start time for the propagation, i.e. the time when the job will first be schedule.

 duration – how long propagation lasts in seconds. NULL means the propagation lasts forever (or until stopped or
altered).

 next_time – a calendar expression (as used by DBMS_SCHEDULER) for the next propagation window.

 latency – if no messages, how many seconds to wait until checking the queue for message to be propagated. 0 results in
propagation as soon as a message is available.

Other APIs to manage propagation are:
 ALTER_PROPAGATION_SCHEDULE

 DISABLE_PROPAGATION_SCHEDULE

 ENABLE_PROPAGATION_SCHEDULE

 SCHEDULE_PROPAGATION

 VERIFY_QUEUE_TYPES

AQ TABLE STRUCTURES
A multi-consumer AQ table has 7 underlying tables, both heap and index organized. The main table with message data for all
queues has the same name as specified in CREATE_QUEUE_TABLE, e.g. ORDERS_QUEUETABLE. Other tables have names
beginning with AQ$, e.g. AQ$_ORDERS_QUEUETABLE_H
A single consumer AQ table creates a single table with main table name; the index structure may vary.

Development

Copyright © Jeffrey M. Jacobs, 2012 9 Session #238

PERFORMANCE TIPS FOR DEQUEUING
Using certain features, such as correlation id or transaction grouping, may require additional indexes on the main table. To
change the behavior of the queries used by AQ, statistics need to be gathered, as AQ tables are exempt from automatic
statistics gathering. However, generating appropriate statistics in a production environment can be problematic due to the
volatile nature of queues; stopping the queues to allow messages to build up in order to gather statistics is probably not
acceptable to the DBAs. Statistics can either be created manually, or, in a development or QA environment, messages can be
enqueued without dequeuing. The statistics can then be imported into production for the table. It’s also a good idea to lock
the statistics, just to be safe.

 QUERY TO BE TUNED
Finding the underlying dequeuing query for tuning is not immediately obvious. Look in appropriate V$ or GV$ views or
AWR report for the following pattern:
SELECT /*+ FIRST_ROWS(1) */
 tab.ROWID,
 …
 tab.user_data
 FROM <queue_table_name> -- the name of the main queue table
 WHERE q_name = :1 AND (state = :2 and …
ORDER BY q_name, …
FOR UPDATE SKIP LOCKED;

FOR UPDATED SKIP LOCKED is the “secret sauce” for AQ’s performance. It performs SELECT FOR UPDATE only on
rows that are not currently locked!!! It also apparently only locks rows when they are fetched, but this has been difficult to confirm.
This is not a documented or user supported feature.

MORE STUFF
It is not possible to cover all of the capabilities and functionality of Oracle AQ in this paper. Some other features of potential
interested include:

 AQ automatically manages space, perform COALESCE as well as removing messages that have passed their retention
periods.

 There are numerous APIs for managing all aspects of AQ.

 AQ can propagate messages via external protocols and gateways

 AQ can be accessed via SOAP

 AQ can retain the entire history of a message for non-repudiation, logging, etc.
The author strongly urges the reader to consult the appropriate documentation, in particular Oracle® Database PL/SQL
Packages and Types Reference and Oracle® Streams Advanced Queuing User's Guide.

